SELENIUM HETEROCYCLES PART II

A SYNTHESIS OF THE NOVEL DISELENGLO(3,4-b)QUINOLINE SYSTEM

T.K. Raja and P. Shanmugam*

Department of Chemistry, Madras University Postgraduate Centre
P.S.G.Tech Campus, Coimbatore-641 004, India.

(Received in UK 11 March 1977; accepted for publication 21 March 1977)

Recently we have demonstrated the utility of $2-\infty - 2$ and 2-thioxo-3-vinylquinolines 3 for the synthesis of furo-and thieno(2,3-b)quinolines. Subsequently we were interested in selenolo(2,3-b)quinolines and we hoped to realise their synthesis through 2-chloro-3-vinylquinolines 3 . Expecting to obtain the selenoxoquinoline 2 , we heated 3 with an ethanol solution containing sodium hydroselenide prepared in situ 4 , 4 b using two-molar (or more) proportions 5 of selenium and sodium borohydride.

The product obtained as a red crystalline solid, m.p. 116°, in 62% yield was found to lack the vinvl-, the NH-, and the selenoxo-groups as shown by its I.R. and N.M.R. spectra. The N.M.R. spectrum (60Mc) exhibited in addition to phenyl (at 6.7.23-8.13, m, 5H) and C_4 -methyl protons (at 6.2.67, s, 3H), a three proton doublet(at 6.1.97, J=7Hz, 3H) and an one proton quartet (at 6.4.93, J=7Hz, 1H). The N.M.R. spectrum is in accordance with structure 6.4.93, J=7Hz, 1H). The N.M.R. spectrum is in accordance with structure 6.4.93, J=7Hz, 1H). Showed the molecular ion peak at m/e = 327 with characteristic isotopic abundance pattern expected of selenium-containing compounds. This precludes the representation of the product by 6.2.92 m.wt.=248).

Considering the above spectral data the product can be formulated as <u>4a</u> with an extra selenium atom incorporated in it and the structure <u>5a</u> viz., 3,4-dimethyl-3(H)-1,2-diselenolo(3,4-b)quinoline⁷ thus assigned, was further corroborated by elemental analysis.

To our best knowledge there is no report in the literature on such a ring system. A similar treatment of the chloroquinolines $\underline{1b}^{3b}$ and $\underline{1c}^{3a}$ led respectively to $\underline{5b}$, m.p. 144-146°, yield 71%, δ 2.00 (d, J=7Hz, 3H, C₃-CH₃), 2.67 (s, 3H, C₄-CH₃), 4.95 (q, J=7Hz, 1H, C₃-H), 7.82 (bs, 2H, C₇-and C₈-H), 8.13 (bs, 1H, C₅-H), m/e= 406 (M⁺) and $\underline{5c}$, m.p. 157-158°, yield 67%, δ 1.97 (d, J=7Hz, 3H, C₃-CH₃) 2.63 (s, 3H, C₄-CH₃), 4.02 (s, 6H, C₆-and C₇-OCH₃), 4.85 (q, J=7Hz, 1H, C₃-H), 7.30 (s, 1H, C₈-H), 7.35 (s, 1H, C₅-H), m/e=387 (M⁺). The products 5a to 5c were recrystallised from light petrol (40-60°).

REFERENCES

- 1. P. Shenmugam, T.K. Raja, Synthesis (1977) in press.
- P. Shanmugam, R. Palaniappan, N. Soundararajan, T.K. Thiruvengadam,
 K. Kanakarajan, Monatsch. Chem. 107, 259 (1976) and references cited therein.
- P. Shanmugam, K. Kanakarajan, N. Soundararajan, A. Gnanasekaran, Synthesis, 253 (1976).
 - b) P. Shanmugam, K. Kanakarajan, N. Soundararajan, Z. Naturforsch, B, 31 1685 (1976).
- 4.a) D.H.R. Barton, S.W. McCombie, J. Chem. Soc. Perkin Trans. 1574 (1975).
 - b) D.L. Klayman, T.S. Griffin, J. Amer. Chem. Soc., 95, 197 (1973).
- 5. Use of NaHSe prepared from one-molar proportion of Se and NaBH₄ led to a poor yield of 5 and an unidentifiable mass.
- L.B. Agenas in "Organic Selenium Compounds: Their chemistry and biology", D.L. Klayman and W.H.H. Gunther Ed., Wiley-Interscience, New York, N.Y. 1973, Chapter XV.
- 7. We thank Dr W.H.H. Gunther, Xerox Corporation, New York, U.S.A., for suggesting the nomenclature.